Groups
Table of contents
Definition
Let $\mathcal{G}$ be a set and $\otimes: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ an inner operation on $\mathcal{G}$.
Then $G = (\mathcal{G}, \otimes)$ is a group if it satisfies the following conditions:
Closure
Closure of $\mathcal{G}$ under $\otimes$:
$$ \forall x,y \in \mathcal{G},\, x \otimes y \in \mathcal{G} $$
Associativity
$$ \forall x,y,z \in \mathcal{G},\, (x \otimes y) \otimes z = x \otimes (y \otimes z) $$
Existence of a Neutral Element
$$ \exists e \in \mathcal{G} \mathbin{s.t.} \forall x \in \mathcal{G},\, x \otimes e = x \wedge e \otimes x = x $$
Existence of an Inverse Element
$$ \forall x \in \mathcal{G},\, \exists y \in \mathcal{G} \mathbin{s.t.} x \otimes y = e \wedge y \otimes x = e $$
Abelian Group
If a group additionally satisfies the following property, it is called an Abelian group:
Commutativity
$$ \forall x,y \in \mathcal{G},\, x \otimes y = y \otimes x $$