Symmetric, Positive Definite Matrix
Related topics:
Table of contents
Relation to Inner Product
Any general inner product can be represented as a matrix multiplication.
The matrix that uniquely defines the inner product is called the symmetric, positive definite matrix.
Let $V$ be an $n$-dimensional inner product space with inner product $\langle\cdot,\cdot\rangle: V \times V \rightarrow \mathbb{R}$.
Let $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$ be an ordered basis of $V$.
Any vector $\mathbf{x}, \mathbf{y} \in V$ can be represented as a linear combination of the basis vectors:
\[\mathbf{x} = \sum_{i=1}^n \lambda_i \mathbf{b}_i \quad\quad\quad \mathbf{y} = \sum_{j=1}^n \psi_j \mathbf{b}_j\]for some $\lambda_i, \psi_j \in \mathbb{R}$.
Also, let $\mathbf{\hat{x}} = [\lambda_1 \dots \lambda_n]^T$ and $\mathbf{\hat{y}} = [\psi_1 \dots \psi_n]^T$, which are the coordinate vectors of $\mathbf{x}$ and $\mathbf{y}$ with respect to the ordered basis $B$.
Often also denoted $[\mathbf{x}]_B$ and $[\mathbf{y}]_B$. See coordinate vectors with respect to orderded bases.
The inner product $\langle\mathbf{x},\mathbf{y}\rangle$ have three properties:
First using bilinearity:
\[\langle\mathbf{x},\mathbf{y}\rangle = \left\langle\sum_{i=1}^n \lambda_i \mathbf{b}_i, \sum_{j=1}^n \psi_j \mathbf{b}_j\right\rangle = \sum_{i=1}^n \sum_{j=1}^n \lambda_i \langle\mathbf{b}_i, \mathbf{b}_j\rangle \psi_j = \mathbf{\hat{x}}^T \mathbf{A} \mathbf{\hat{y}}\]$\mathbf{\hat{x}}, \mathbf{\hat{y}}$ are just coordinates, so $\mathbf{A}$ is the matrix that uniquely defines the inner product operation.
Because an inner product is symmetric, $\mathbf{A}$ is also a symmetric matrix.
Now using positive definiteness:
\[\begin{equation} \label{eq:posdef} \tag{Positive Definite} \forall \mathbf{x} \in V\setminus\{\mathbf{0}\},\, \mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \end{equation}\]Such $\mathbf{A}$ is called the symmetric, positive definite matrix.
Hence, $\langle\mathbf{x},\mathbf{y}\rangle$ is a valid inner product if and only if there exists a symmetric, positive definite matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that
$$ \langle\mathbf{x},\mathbf{y}\rangle = \mathbf{\hat{x}}^T \mathbf{A} \mathbf{\hat{y}} $$
Again, remember that $\hat{\mathbf{x}}$ and $\hat{\mathbf{y}}$ are coordinate vectors of each respect to the ordered basis $B$.
Symmetric, Positive Semi-Definite Matrix
In equation \eqref{eq:posdef}, if the inequality is loosened to $\geq$, then $\mathbf{A}$ is called the symmetric, positive semi-definite matrix.
Nullspace of Symmetric, Positive Definite Matrix
By definition, we know that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$. So trivially, $\mathbf{A} \mathbf{x} = \mathbf{0}$ only when $\mathbf{x} = \mathbf{0}$.
Therefore, the kernel of $\mathbf{A}$ only contains the zero vector.
In other words, the columns of $\mathbf{A}$ are linearly independent. Also, $\mathbf{A}$ is invertible.
Diagonal Elements of Symmetric, Positive Definite Matrix
Diagonal elements of $\mathbf{A}$ are positive, because $a_{ii} = \mathbf{e}_i^T \mathbf{A} \mathbf{e}_i > 0$.