Convergence of Random Variables
We cannot directly use the calculus definition of convergence when dealing with random vectors.
For example, suppose you have $n$ samples $X_1, X_2, \ldots, X_n$ from the same distribution of a random variable $X$.
Even if $n \to \infty$, we cannot directly say that $X_n$ converges to $X$, even though they have the same distribution, because they are random variables and $\Pr(X_n = X) = 0$.
So we introduce different types of convergence for random variables.
Table of contents
Convergence in Distribution
$X_n$ converges in distribution to $X$ (or $X_n \leadsto X$, $X_n \xrightarrow{d} X$) if:
$$ \lim_{n \to \infty} F_{n}(x) = F(x) $$
where $F_{n}$ and $F$ are the CDFs of $X_n$ and $X$ respectively.
This is also known as weak convergence.
- If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n + Y_n \leadsto X + c$.
- If $X_n \leadsto X$ and $Y_n \leadsto c$, then $X_n Y_n \leadsto Xc$.
- If $X_n \leadsto X$, then $g(X_n) \leadsto g(X)$ for any continuous function $g$.
$Y_n \leadsto c$ means $Y_n$ converges to a point mass distribution Y at $c$. Where $P(Y = c) = 1$.
Slutsky’s Theorem
The first two bullet points above are part of Slutsky’s Theorem.
Convergence in Probability
$X_n$ converges in probability to $X$ (or $X_n \xrightarrow{P} X$, $\plim_{n \to \infty} X_n = X$) if:
$$ \lim_{n \to \infty} \Pr(|X_n - X| > \epsilon) = 0 $$
for all $\epsilon > 0$.
- If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n + Y_n \xrightarrow{P} X + Y$.
- If $X_n \xrightarrow{P} X$ and $Y_n \xrightarrow{P} Y$, then $X_n Y_n \xrightarrow{P} XY$.
- If $X_n \xrightarrow{P} X$, then $g(X_n) \xrightarrow{P} g(X)$ for any continuous function $g$.
Convergence in $r$-th Mean
Convergence in Quadratic Mean
$X_n$ converges in quadratic mean to $X$ (or $X_n \xrightarrow{qm} X$) if:
$$ \lim_{n \to \infty} \E[(X_n - X)^2] = 0 $$
Also called convergence in $L^2$ norm or convergence in mean square.
- If $X_n \xrightarrow{qm} X$ and $Y_n \xrightarrow{qm} Y$, then $X_n + Y_n \xrightarrow{qm} X + Y$.
General $r$-th Mean
$X_n$ converges in $r$-th mean to $X$ if:
$$ \lim_{n \to \infty} \E[|X_n - X|^r] = 0 $$
Also called convergence in $L^r$ norm.
Chain of Implications
From the strongest to the weakest:
$$ X_n \xrightarrow{qm} X \quad \implies \quad X_n \xrightarrow{P} X \quad \implies \quad X_n \leadsto X $$
The converse is false.
For Point Mass Distribution
Only when $X$ is a point mass distribution at $c$, i.e.:
\[\Pr(X = c) = 1\]the following holds:
$$ X_n \leadsto c \quad \implies \quad X_n \xrightarrow{P} c \quad $$