Delta Method
Table of contents
Univariate Delta Method
Let $X_n$ be a RV that asymptotically follows a normal distribution (see CLT).
\[X_n \leadsto N(\mu, \sigma^2)\]If $g$ is a differentiable function and $g’(\mu) \neq 0$, then the distribution of $g(X_n)$ converges to a normal distribution:
$$ g(X_n) \leadsto N\left(g(\mu),\, (g'(\mu))^2\, \frac{\sigma^2}{n}\right) $$
Taylor Expansion
The first order Taylor expansion approximation of $g(X_n)$ around $\mu$ is:
\[g(X_n) \approx g(\mu) + g'(\mu) (X_n - \mu)\]Since $g’(\mu) \neq 0$, rearranging the terms:
\[X_n - \mu \approx \frac{g(X_n) - g(\mu)}{g'(\mu)}\]Multiplying both sides by $\frac{\sqrt{n}}{\sigma}$:
\[\frac{\sqrt{n} (X_n - \mu)}{\sigma} \approx \frac{\sqrt{n}(g(X_n) - g(\mu))}{g'(\mu) \sigma} \leadsto N(0, 1)\]The standardized form makes it easy to see that
\[g(X_n) \leadsto N\left(g(\mu),\, (g'(\mu))^2\, \frac{\sigma^2}{n}\right)\]