Estimators / Bias / Consistency

Table of contents
  1. Estimators
    1. Sampling Distribution
    2. Standard Error
  2. Bias
  3. Unbiased Estimator
  4. Consistent Estimator
  5. Bias vs Consistency
  6. Mean Squared Error (MSE) of an Estimator
  7. Normal Estimator

Estimators

Let $X_1, \dots, X_n$ be IID samples from a population with unknown parameter $\theta$.

An estimator of $\theta$ is a random variable:

$$ \hat{\theta}_n = g(X_1, \dots, X_n) $$

where $g$ is a function of the samples.

Sampling Distribution

Distribution of the estimator $\hat{\theta}_n$ is called the sampling distribution.

Standard Error

The standard deviation of the sampling distribution is called the standard error.

$$ \text{SE}(\hat{\theta}_n) = \sqrt{\Var(\hat{\theta}_n)} $$


Bias

Let $\hat{\theta}$ be an estimator of $\theta$.

The bias of an estimator is defined as:

$$ \text{bias}(\hat{\theta}_n) = \text{E}_\theta[\hat{\theta}_n] - \theta $$

The above $\text{E}_\theta$ is expectation respect to the distribution $f(x_1, \dots, x_n; \theta)$, not the distribution for $\theta$.


Unbiased Estimator

We say that an estimator $\hat{\theta}_n$ is unbiased if:

$$ \text{bias}(\hat{\theta}_n) = 0 \iff \text{E}_\theta[\hat{\theta}_n] = \theta $$

The expected value of an unbiased estimator is equal to the true parameter value.


Consistent Estimator

We say that an estimator $\hat{\theta}_n$ is consistent if:

$$ \hat{\theta}_n \xrightarrow{P} \theta \iff \plim_{n \to \infty} \hat{\theta}_n = \theta $$

The estimator converges in probability to the true parameter value.


Bias vs Consistency

Being an unbiased estimator does not imply consistency.

However, if the unbiased estimator converges to a point, then it is consistent:

$$ \text{bias} \rightarrow 0 \wedge \text{se} \rightarrow 0 \implies \hat{\theta}_n \xrightarrow{P} \theta $$

On the other hand, a biased estimator can be consistent.

The uncorrected biased sample variance

\[S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2\]

is one example of a biased estimator that is consistent.


Mean Squared Error (MSE) of an Estimator

When we build a model $\hat{\theta}_n$, we can optimize the model to minimize the mean of squared difference from the true parameter $\theta$.

This mean squared error (MSE) is the measure of the performance of an estimator.

MSE of an estimator $\hat{\theta}_n$ is defined as:

$$ \begin{align} \text{MSE}(\hat{\theta}_n) &= \text{E}_\theta[(\hat{\theta}_n - \theta)^2] \\[1em] &= \text{bias}^2(\hat{\theta}_n) + \Var(\hat{\theta}_n) \end{align} $$

See proof from $(1)$ to $(2)$, the bias-variance decomposition of MSE, here.


Normal Estimator

An estimator $\hat{\theta}_n$ is asymptotically normal if:

$$ \frac{\hat{\theta}_n - \theta}{\text{SE}(\hat{\theta}_n)} \leadsto N(0,1) $$